
Journal of Applied Mechanics and Technical Physics, Vol. 42, No. 5, pp. 890–897, 2001

COMPARATIVE ANALYSIS OF THE TWO-CONSTANT GENERALIZATIONS

OF HOOKE’S LAW FOR ISOTROPIC ELASTIC MATERIALS AT FINITE STRAINS

UDC 539.3:678.4A. A. Adamov

For ten models of the isothermal behavior of materials, the solutions of boundary-value problems are
studied for five types of the experimentally reproducible uniform stress–strain state with unchanged
directions of the principal axes. It is found that, for three models, the governing equations are similar
to the relations of Hooke’s law and valid within the same range of the ratio between the shear and bulk
moduli. In these models, the specific strain energy can be represented as a sum of the energies due
to changes in volume and shape. The ranges where the other three known models exhibit incorrect
behavior are determined.

Introduction. It is well known that large reversible strains occur mainly in elastomers and amorphous
polymers in a highly elastic state. Experimental data on mechanical loading of these materials show that they
possess viscoelastic and thixotropic properties. For practical purposes, these effects can be ignored, and equations
of state of an elastic body can be used as a first (equilibrium) approximation. Elastic models are also the basis for
constructing more complex governing equations.

For an isotropic body undergoing small isothermal strains, Hooke’s law contains only two Lamé constants µ
and λ (µ is the shear modulus) with allowable values µ > 0 and 3λ + 2µ > 0. Truesdell [1] states that these
inequalities are necessary and sufficient for any shear strain to cause the shear stress of the same sign and for a
local volume to increase or decrease depending on whether the mean stress is positive or negative. They ensure
the positive work done in any infinitesimal strain from a natural stress-free configuration and the existence and
uniqueness of the solution. They are also sufficient for the velocities of propagation of waves of all kinds to be real
numbers.

Variety of finite-strain measures has led to various generalizations of Hooke’s law for subsets of the above-
mentioned range of variability of the Lamé parameters (incompressible, slightly compressible, and compressible
materials). At present, the complete system of supplementary inequalities [1–7] similar in rigor and sufficiency
to the above inequalities for the Lamé parameters is lacking. For example, the models of a polylinear body and
Murnaghan’s linear material [3] used in theoretical applications satisfy Hadamard’s conditions [5, 6] but predict a
physically incorrect change in volume [8].

This study aims to determine simplest equations of state that describe satisfactorily the experimental data
in a wide range of elastic constants for strains varying from −0.5 to 1 for different types of the stress–strain state.
In contrast to [9], attention is focused on the description of the volume strain as one of the main criteria in choosing
the equations of state.

Types of the Stress–Strain State. We consider some cases of uniform deformation with invariable
directions of the principal axes of strain, which are coaxial with the principal axes of the Cauchy stress tensor T .
We choose the Cartesian coordinate system as a reference frame for the undeformed configuration of a body. In this
case, the idealized specimen of a material shaped as a cube with edges of unit length and faces perpendicular to
the directions of the principal axes of the tensor T deforms into a parallelepiped with edges of length λi (hereafter
i = 1, 2, and 3), which completely determines its state.
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Models of elastic and hyperelastic materials are distinguished [3]. For elastic materials, the stresses in
the specimen are directly determined by the principal values of the Cauchy stress tensor ti. For incompressible
hyperelastic materials determined by a potential W , we have [3, 6]

ti = λi
∂W

∂λi
+ p = 2λ2

i

∂W

∂I1
− 2λ−2

i

∂W

∂I2
+ p,

where p is the undetermined Lagrange multiplier; for compressible hyperelastic materials, we obtain
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where Ii are the principal invariants of the Cauchy–Green strain measure, which are equal to the invariants of
Finger’s strain measure: I1 = λ2
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As in [9], we consider five types of the stress–strain state:
1) Hydrostatic stress state (HSS): λ1 = λ2 = λ3 and ti = −q (q is the hydrostatic pressure);
2) Uniaxial deformed state (UDS): λ1 = λ2 = 1 and t1 = t2;
3) Uniaxial stress state (USS): λ1 = λ2 and t1 = t2 = 0;
4) Symmetric biaxial stress state (SBSS): λ1 = λ2, t1 = t2, and t3 = 0;
5) Nonsymmetric biaxial deformed state (NBDS): λ2 = 1 and t3 = 0 (in [9], the symmetric biaxial deformed

state is analyzed instead).
Generalizations of Hooke’s Law. We consider models of incompressible materials (I3 ≡ 1) with the

following potentials:
— Treloar’s potential (“neo-Hookean body”) [10]

W1 = (1/2)µ(I1 − 3); (1)

— Bartenev–Khazanovich potential [11]

W2 = 2µ(λ1 + λ2 + λ3 − 3) (2)

and the model of Hencky’s incompressible material [3] with zero angle of deviatoric similarity

T3 = 2µN + pE, (3)

where N is the logarithmic-strain measure tensor determined in the basis of the principal axes of strain and E is
the unit tensor.

The models of the following compressible materials are considered:
— Hencky’s material [3] with a zero phase of deviatoric similarity, which coincides with (3) for I3 = 1:

T4 = 2µN + λ ln (
√
I3 )E; (4)

— Murnaghan’s linear material determined by two first terms of the expansion of W in powers of the
Cauchy–Green strain tensor invariants [3]:

W5 = (1/8)(λ+ µ)(I1 − 3)2 − (1/2)µ(I2 − 2I1 + 3); (5)

— polylinear material (harmonic material and John’s material) [3]

W6 = (1/2)λ (δ1 + δ2 + δ3)2 + µ (δ2
1 + δ2

2 + δ2
3) (6)

(δi = λi − 1 are the principal relative extensions);
— material described by the simplified Signorini’s law [3]

W7 =
√
I3

[
(1/2)(λ+ µ)(j×1 )2 + µ (1− j×1 )

]
− µ (7)

[j×1 = A1 +A2 +A3 = (3− I2/I3)/2 is the first invariant of the Almansi strain tensor, where Ai = (1− λ−2
i )/2 are

its principal values].
For slightly compressible materials, we consider the variants of the general two-constant potentials:
— Variant of the Peng–Landel potential [12], which coincides with (1) for I3 = 1:

W8 = (1/2)µ(I1I
−1/3
3 − 3) + (1/2)BΘ2 (8)

(B = λ+ 2µ/3 is the parameter which becomes the bulk modulus for small strains and Θ =
√
I3 − 1 is the relative

change in volume);
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TABLE 1

Model t1 = t2 = t3

Hooke’s law 3Bδ1

T4 3B lnλ1

W5 3B(λ2
1 − 1)λ−1

1 /2

W6 3B(λ1 − 1)λ−2
1

W7 3BA1[1− (3 + µ/B)A1/6]

W8 BΘ

W9 BΘ

W10 B(I3 − 1)λ3
1/2 + µ(3λ−1

1 − 5λ3
1 + 2λ9

1)/3

— Variant of the Chernykh–Shubina potential [7], which coincides with (2) for I3 = 1:

W9 = 2µ[(λ1 + λ2 + λ3)I−1/6
3 − 3] + (1/2)BΘ2; (9)

— Variant of Rogovoi’s potential [13], which corresponds to the incompressible material (1) for I3 = 1:

W10 = (1/2)µ(I1 − I3 − 2) + (1/8)(λ+ 2µ)(I3 − 1)2. (10)

The materials described by (1)–(10) belong to the class of simple materials [1]. The constants that enter these
potentials coincide with the constants in Hooke’ law in the limiting case, and they can be determined experimentally
for uniform stress–strained states.

According to [7], models (1)–(7) can be classified by the generalized strain tensors of the real order n of
strain measure: models (1)–(3) refer to incompressible “standard” materials of the second, first, and zeroth order,
respectively, and models (4)–(7) refer to compressible “standard” materials of the zeroth, second, first, and minus
second order, respectively. The models of slightly compressible materials (8) and (9) are particular, simplest cases
of the second and first order of the governing equation [14], respectively, in which the distortion tensor is used.

In some cases, the use of strain measures with fractional indices n in constructing models of real materials [15]
simplify the governing equations, but the resulting generalizations of Hooke’s law involve the index n as an additional
parameter of the equation of state. In (1)–(10), only some of its integer values are used.

Discussion of Results. In solving the boundary-value problems for USS, SBSS, and NBDS, the use
of the natural boundary conditions allows one to express the experimentally measured stresses by formulas that
contain only the parameter µ and are stable with respect to the errors in determining the strain components. A
numerical analysis of the corresponding boundary-value problems is performed for various values of the ratio µ/B.
The maximum value µ/B = 1 considered characterizes conventionally called porous materials [in the linear theory,
Poisson’s ratio is ν = (3B−2µ)/(6B+2µ) = 0.125] and the minimum value µ/B = 0.001 (ν = 0.4995) characterizes
compact (monolithic) materials.

Rogovoi [13] showed that model (10) is applicable only to slightly compressible materials. The validity of
this statement is supported by a numerical analysis of the changes in volume for all types of the stress–strain state
considered for µ/B = 1. Therefore, model (10) is analyzed only in the region of weak compressibility (µ/B � 1).

Hydrostatic Stress State. Table 1 lists the dependences of the principal values of the stress tensor (t1 = t2 =
t3) for Hooke’s law and models (4)–(10) on the constants and principal relative extension λ1. One can see that the
dependences for models (8) and (9) coincide. The graphs of the dependences for models (4) and (5) and also models
(6) and (7) almost coincide for real pressures and µ/B = 1.0–0.001. In contrast to the other models, model (10)
gives a “soft” (with a negative second derivative) dependence t1(Θ) in the region of compression.

For models (7) and (10), the dependence of t1(Θ) on the parameter µ is pronounced only for finite strains;
therefore, for models (4)–(10), the parameterB can be determined directly from the initial segment of the curve t1(Θ)
without allowance for µ.

Uniaxial Deformed State. Table 2 shows the dependences t1(λ3) = t2(λ3) and t3(λ3). For models (5) and
(10), the dependences t3(λ3) coincide, whereas the dependences t1(λ3) are different. Comparing the dependences
t3/B ∼ Θ for UDS with the dependence t1/B ∼ Θ for HSS in the same range of stresses, we infer that nonlinearity
of the curves t3/B ∼ Θ is more pronounced.
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TABLE 2

Model t1 = t2 t3

Hooke’s law λδ3 (λ+ 2µ)δ3

T4 λ lnλ3 (λ+ 2µ) lnλ3

W5 λ(λ2
3 − 1)λ−1

3 /2 (λ+ 2µ)(λ2
3 − 1)λ3/2

W6 λ(λ3 − 1)λ−1
3 (λ+ 2µ)(λ3 − 1)

W7 λA3 + (λ+ µ)A2
3/2 (λ+ 2µ)A3 − 3(λ+ µ)A2

3/2

W8 BΘ + µ I
−5/6
3 (λ2

3 − 1)/3 BΘ + 2µI
−5/6
3 (λ2

3 − 1)/3

W9 (B − 2µλ
−4/3
3 /3)Θ (B + 4µλ

−4/3
3 /3)Θ

W10 (λ+ 2µ)(I3 − 1)λ3/2 + µ(λ−1
3 − λ3) (λ+ 2µ)(λ2

3 − 1)λ3/2

TABLE 3

Model Relation λ1 ∼ λ3 t3

Hooke’s law δ1 = −νδ3 Eδ3

W1 λ1 = λ
−1/2
3 µ(λ2

3 − λ2
1)

W2 λ1 = λ
−1/2
3 2µ(λ3 − λ1)

T3 λ1 = λ
−1/2
3 3µ lnλ3 = E lnλ3

T4 lnλ1 = −ν lnλ3 E lnλ3

W5 λ2
1 − 1 = −ν(λ2

3 − 1) µλ−2
1 λ3(λ2

3 − λ2
1)

W6 λ1 − 1 = −ν(λ3 − 1) 2µλ−2
1 (λ3 − λ1)

W7 λ1 = (1 + 4νA3 +A2
3)−1/4 2[µ− (λ+ µ)j×1 ](A3 −A1)

W8 BΘ + µI
−5/6
3 (λ2

1 − λ2
3)/3 = 0 µI

−5/6
3 (λ2

3 − λ2
1)

W9 BΘ + 2µI
−2/3
3 (λ1 − λ3)/3 = 0 2µI

−2/3
3 (λ3 − λ1)

W10 (λ+ 2µ)(I3 − 1) + 2µ(λ−2
1 λ−2

3 − 1) = 0 µI
−1/2
3 (λ2

3 − λ2
1)

For UDS, the rigidity in compression of models (4)–(10) depends on the parameters µ and B in the entire
strain range, and therefore, the parameter B can be determined from the compression curve if µ is known. For
real strains, the stress state tends to the hydrostatic state as the ratio µ/B decreases. In this case, the difference
in the principal stresses is of the order of 2µ/B. Therefore, the parameter B can be determined by testing slightly
compressible materials in UDS.

Uniaxial Stress State. Table 3 gives the relations between λ1 and λ3 obtained from the incompressibility
condition or the natural boundary condition t1 = 0 and also the expressions for t3. Figure 1 shows the volume-
change curve 3BΘ/E ∼ δ3 [E = 9µB/(µ+ 3B) is the parameter that corresponds to Young’s modulus in the linear
theory of elasticity] for µ/B = 1 (Fig. 1a) and µ/B = 0.001 (Fig. 1b and c). The numbers at the curves in Figs. 1–3
correspond to the numbers of the model. The character of the curves in Fig. 1c shows that, for µ/B = 0.001, models
(5)–(7) describe the volume changes incorrectly.

Analysis of the Dependences Θ(δ3) for Models (5)–(7). 1. Murnaghan’s Linear Material (5). The volume-
change curve Θ(δ3) has a maximum in the range of extension (below, we give expressions for the axial strain and the
corresponding bracketed values of δ3 calculated for µ/B = 0.001) for λ3 = [1 − 2µ/(3B)]−1/2 (δ3 = 3.335 · 10−4),
then, it changes the sign for λ3 = [2.25 + 6µ/(3B − 2µ)]1/2 − 0.5 (δ3 = 6.67 · 10−4) and reaches the limiting,
physically admissible value Θ = −1 for λ3 = (1 + 1/ν)1/2 (δ3 = 0.7326), which corresponds to zero volume of the
specimen and infinitely high “true” stresses t3. For δ3 > (1 + 1/ν)1/2, the cross-sectional area of the specimen and
its volume become negative.

2. Polylinear Material (6). The volume-change curve Θ(δ3) has a maximum in the region of extension for
δ3 = (1 − 2ν)/(3ν) (δ3 = 6.673 · 10−4), changes the sign for δ3 = 1.5 + (1 − 2ν)/ν − [2.25 + (1 − 2ν)/ν]1/2

(δ3 = 13.348 · 10−4), and reaches the minimum Θ = −1 (zero volume) for δ3 = 1/ν (δ3 = 2.002). At this point,
the curve of “true” stresses has a discontinuity of the second kind, but the cross-sectional area and volume of the
specimen are positive for δ3 > 1/ν.
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Fig. 1

3. Simplified Signorini’s Material (7). The volume-change curve is nonmonotonic in two ranges of µ/B:
ν > (1771/2 − 1)/32 ' 0.3845 (µ/B < 0.2503) and ν < −(1771/2 + 1)/32 ' −0.4470 (µ/B > 5.1375). The
first range is of practical interest. In this region, the curve Θ(δ3) reaches a minimum for A3 = [1 − 8ν + (64ν2 +
8ν − 11)1/2]/6 (δ3 = −3.333 · 10−4) as the compression increases, and then it increases and has a maximum for
A3 = [1− 8ν − (64ν2 + 8ν − 11)1/2]/6 (δ3 = −0.4223).

Figure 2a shows the dimensionless dependences t∗3/E ∼ δ3 for µ/B = 0.001, where t∗3 = t3λ
2
1 is the component

of the “conventional” stress (t∗i = tiI
1/2
3 /λi) normalized to the cross-sectional area in the undeformed configuration,

which is independent of the description of volume changes.
For each material, two dependences listed in Table 3 allow one to determine formally both independent

parameters of any model considered. For incompressible materials, they make it possible to estimate the accuracy
to which the condition λ2

1λ3 = 1 is satisfied and to determine µ in approximating the curve t3(λ3).
For slightly compressible materials under USS, determination of the parameters B, λ, and ν requires high

accuracy in measuring the transversal and longitudinal extensions (to determine small volume changes exactly).
Therefore, λ1(λ3) is calculated approximately with the use of the incompressibility condition. Given the dependence
of λ1(λ3), the parameter µ (or the parameter E = 3µ for the hypothesis of incompressibility accepted) in (4) and
(8)–(10) is calculated in the same manner as for incompressible materials. This approach leads to relative errors of
the order of 2µ/B in approximating t3(λ3). For SBSS and NBDS, the parameters of the model can be determined
in a similar manner. However, these stress states are rarely reproduced in experiments.

Symmetric Biaxial Stress State. The relations between λ3 and λ1 and the formulas for stresses t1 = t2 are
listed in Table 4. The results of numerical analysis for µ/B = 0.001 are similar to those obtained in analyzing
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Fig. 2

TABLE 4

Model Relation λ3 ∼ λ1 t1 = t2

Hooke’s law δ3 = −2λδ1/(λ+ 2µ) 6µBδ1/(λ+ 2µ)

W1 λ3 = λ
−1/2
1 µ(λ2

1 − λ2
3)

W2 λ3 = λ
−1/2
1 2µ(λ1 − λ3)

T3 λ3 = λ
−1/2
1 2µ ln (λ1/λ3)

T4 lnλ3 = lnλ1(4µ− 6B)/(4µ+ 3B) 2µ ln (λ1/λ3)

W5 λ2
3 − 1 = −2λ(λ2

1 − 1)/(λ+ 2µ) µλ−1
3 (λ2

1 − λ2
3)

W6 λ3 − 1 = −2λ(λ1 − 1)/(λ+ 2µ) 2µλ−1
1 λ−1

3 (λ1 − λ3)

W7 [2λ/(λ+ µ)]j×1 + (j×1 )2 + 4[µ/(λ+ µ)− j×1 ]A3 = 0 2[µ− (λ+ µ)j×1 ](A1 −A3)

W8 BΘ + 2µI
−5/6
3 (λ2

1 − λ2
3)/3 = 0 µI

−5/6
3 (λ2

1 − λ2
3)

W9 BΘ + 4µI
−2/3
3 (λ1 − λ3)/3 = 0 2µI

−2/3
3 (λ1 − λ3)

W10 (λ+ 2µ)(I3 − 1) + 2µ(λ−4
1 − 1) = 0 µI

−1/2
3 (λ2

1 − λ2
3)

USS: for model (5), no real roots δ3 were found in the region δ1 > 0.24; the volume-change curves 3BΘ/E ∼ δ1
for models (5)–(7) are similar to the corresponding curves 3BΘ/E ∼ δ3 for USS. Figure 2b shows the dependences
t∗1/E ∼ δ1 for µ/B = 0.001, from which one can see that the nonlinear behavior for USS differs much from that for
SBSS (in the linear model, these dependences differ in a scaling factor only).

Nonsymmetric Biaxial Deformed State. For incompressible materials, NBDS is identified with pure shear [10].
Table 5 shows the relations between λ3 and λ1 and the formulas for t1 and t2. As in the case of USS, model (5) has
no real roots δ3 in the region δ1 > 0.42 for µ/B = 0.001. For models (5)–(7), the curves Θ(δ1) are similar.

For NBDS, one can obtain much more information for choosing models by measuring both nonzero stress
components in experiments, since the ratio t∗1/t

∗
2 depends strongly not only on µ/B and δ1 but also on the strain

measure used. Figure 3 shows the dependences t∗1/t
∗
2 ∼ δ1 calculated for different models for µ/B = 1 (Fig. 3a) and

µ/B = 0.001 (Fig. 3b). In Fig. 3b, we do not show the curves for models (5)–(7) for the reasons mentioned above.
For the above-considered incompressible materials (and other “standard” incompressible materials [7]), the

order n can be determined by the formula

n =
d(t1/t2)
dδ1

∣∣∣
δ1=0

.

For models (4) and (8)–(10), this formula gives an error proportional to µ/B if µ/B � 1. Chernykh and Litvi-
nenkova [7] propose to determine n as a parameter of approximation of experimental data by the “straightening
coordinate” method.
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TABLE 5

Model Relation λ3 ∼ λ1 t1/t2

Hooke’s law δ3 = −λδ1/(λ+ 2µ)
4µδ1(λ+ µ)/(λ+ 2µ)

2µδ1λ/(λ+ 2µ)

W1 λ3 = λ
−1/2
1 µ(λ2

1 − λ2
3)/[µ(1− λ2

3)]

W2 λ3 = λ
−1/2
1 2µ(λ1 − λ3)/[2µ(1− λ3)]

T3 λ3 = λ
−1/2
1 4µ lnλ1/(2µ lnλ1)

T4 lnλ3 = lnλ1(2µ− 3B)/(4µ+ 3B) 2µ ln (λ1/λ3)/[2µ ln (1/λ3)]

W5 λ2
3 − 1 = −λ(λ2

1 − 1)/(λ+ 2µ) µλ1λ
−1
3 (λ2

1 − λ2
3)/[µλ−1

1 λ−1
3 (1− λ2

3)]

W6 λ3 − 1 = −λ(λ1 − 1)/(λ+ 2µ) 2µλ−1
3 (λ1 − λ3)/[2µλ−1

1 λ−1
3 (1− λ3)]

W7
2λ

λ+ µ
j×1 + (j×1 )2 + 4

(
µ

λ+ µ
− j×1

)
A3 = 0

2[µ− (λ+ µ)j×1 ](A1 −A3)

−2[µ− (λ+ µ)j×1 ]A3

W8 BΘ + µI
−5/6
3 (2λ2

3 − λ2
1 − 1)/3 = 0 µI

−5/6
3 (λ2

1 − λ2
3)/[µI

−5/6
3 (1− λ2

3)]

W9 BΘ + 2µI
−2/3
3 (2λ3 − λ1 − 1)/3 = 0 2µI

−2/3
3 (λ1 − λ3)/[2µI

−2/3
3 (1− λ3)]

W10 (λ+ 2µ)(I3 − 1) + 2µ(λ−2
1 − 1) = 0 µI

−1/2
3 (λ2

1 − λ2
2)/[µI

−1/2
3 (1− λ2

2)]

Fig. 3

An analysis of the analytical relations Θ(δ1) for models (5)–(7) under SBSS and NBDS has some specific
features, but its results are similar to those for USS.

Conclusions. The results of this work can be summarized as follows.
1. Models (4), (8), and (9) are the best generalizations of Hooke’s law within the range of µ/B considered.

The advantage of model (8) over models (4) and (9) is that reduction to the principal axes of strain is not needed
in boundary-value problems where an arbitrary stress–strain state is considered. As µ/B → 0, models (4), (8), and
(9) become models (3), (1), and (2), respectively.

2. Models of compressible materials (5)–(7) are applicable within a limited range of the parameter µ/B. For
finite strains, these models cannot be used to describe the behavior of monolithic rubber-like materials (µ/B � 1),
since they predict physically incorrect changes in volume.

3. The common property of models (5)–(7) and (10), which are applicable within a limited range of the
parameter µ/B, is that the specific potential strain energy cannot be decomposed into the energy due to distortion
and the energy due to the change in volume (or the latter cannot be ignored in models of incompressible materials).

4. In choosing a model, the ratio of the applied stress to the holding stress t∗1/t
∗
2 measured for NBDS enables

us to estimate the order of the best generalized strain measure to construct the simplest model of the behavior of
incompressible and slightly compressible materials.
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